Data Science – was ist das eigentlich?! Von Annalyn Ng und Kenneth Soo

Sie möchten endlich wissen, was sich hinter Schlagworten wie "Data Science" und "Machine Learning" eigentlich verbirgt - und was man alles damit anstellen kann? Auf allzu viel Mathematik würden Sie dabei aber gern verzichten? Dann sind Sie hier genau richtig: Dieses Buch bietet einen kompakten Einblick in die wichtigsten Schlüsselkonzepte der Datenwissenschaft und ihrer Algorithmen - und zwar ohne Sie mit mathematischen Formeln und Details zu belasten! Der Fokus liegt - nach einer übergeordneten Einführung - auf Anwendungen des maschinellen Lernens zur Mustererkennung und Vorhersage von Ergebnissen: In jedem Kapitel wird ein Algorithmus erläutert und mit einem leicht verständlichen, realen Anwendungsbeispiel verknüpft.

ISBN 978-3-662-56775-3     19,99 €  Portofrei     Bestellen

Die Kombination aus intuitiven Erklärungen und zahlreichen Abbildungen ermöglicht dabei ein grundlegendes Verständnis, das ohne mathematische Formelsprache auskommt. Abschließend werden auch die Grenzen und Nachteile der betrachteten Algorithmen explizit aufgezeigt.

Mehr Infos...

Inhaltsverzeichnis

Leseprobe bei Google Books

Die Autor/innen:

Annalyn Ng schloss ihr Grundstudium an der University of Michigan (Ann Arbor) ab und war dort auch als Statistiktutorin tätig. Anschließend absolvierte sie ihr Master-Studium am Psychometrics Centre der University of Cambridge, indem Sie dort Social Media-Daten für gezielte Werbung und programmierte kognitive Tests für die Stellenv .ermittlung auswertete. Im Team für Verhaltenswissenschaften bei Disney Research untersuchte sie später psychologische Profile von Konsumenten.

Kenneth Soo hat sein Master-Studium in Statistik an der Stanford University abgeschlossen. Zuvor absolvierte er sein Grundstudium in Mathematik, Operational Research, Statistics and Economics (MORSE) an der University of Warwick: Er war dort als Forschungsassistent bei der Operational Research & Management Sciences Group tätig und arbeitete an der bi-objektiven robusten Optimierung mit Anwendungen in Netzwerken, die zufälligen Ausfällen unterliegen.

 

Erstellt: 11.05.2019 - 06:19  |  Geändert: 17.05.2019 - 03:54